翻訳と辞書 |
Physics of roller coasters : ウィキペディア英語版 | Physics of roller coasters
Simply speaking, a roller coaster is a machine that uses gravity and inertia to send a train of cars along a winding track. This combination of gravity and inertia, along with G-forces and centripetal acceleration give the body certain sensations as the coaster moves up, down, and around the track. The forces experienced by the rider are constantly changing, leading to feelings of joy in some riders and nausea in others. The basic principles of roller coaster mechanics have been known since 1865, and since then roller coasters have become a popular diversion. ==Centripetal acceleration==
Centrifugal (center fleeing) force is not a true force, but rather the result of an object’s inertia, or resistance to change in direction, as the object moves in a circular path. What really happens is the track's curve prevents the object following the straight line it otherwise would, by applying a force on it (via its outside edges) towards the center of the circle, forcing it to travel in a curved path instead. This centripetal (center seeking) force actually points toward the center of the circle, but a roller coaster rider experiences it as centrifugal force, a force pushing them toward the outer edge of the car. The following equation expresses centripetal acceleration (to make it centripetal force simply multiply by the mass):
where ''ar'' is centripetal acceleration, ''v'' is velocity and ''r'' is the radius of the circular path. This shows that two roller coaster cars entering two loops of different size at the same speed will experience different acceleration forces: the car in the tighter loop will feel greater acceleration while the car in the wider loop will feel less acceleration.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Physics of roller coasters」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|